CS 267 Applications of Parallel Computers

Lecture 9:

Sources of Parallelism and Locality

David H. Bailey

based on previous notes by Jim Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Recap: Parallel Models and Machines

Machine models

- shared memory
- distributed memory
- SIMD

Programming models

- threads
- message passing
- data parallel
- shared address space

Steps in creating a parallel program

- decomposition
- assignment
- orchestration
- mapping

Performance in parallel programs

- try to minimize performance loss from
 - load imbalance
 - communication
 - synchronization
 - extra work

Outline

- ° Simulation models
- ° A model problem: sharks and fish
- ° Discrete event systems
- ° Particle systems
- ° Lumped systems
- Ordinary Differential Equations (ODEs)
- Next time: Partial Different Equations (PDEs)

Simulation Models and A Simple Example

Sources of Parallelism and Locality in Simulation

° Real world problems have parallelism and locality:

- Many objects operate independently of others.
- Objects often depend much more on nearby than distant objects.
- Dependence on distant objects can often be simplified.

° Scientific models may introduce more parallelism:

- When a continuous problem is discretized, temporal domain dependencies are generally limited to adjacent time steps.
- Far-field effects may be ignored or approximated in many cases.

Many problems exhibit parallelism at multiple levels

• Example: circuits can be simulated at many levels, and within each there may be parallelism within and between subcircuits.

Basic Kinds of Simulation

- Oiscrete event systems:
 - Examples: "Game of Life", timing-level simulation for circuits.
- ° Particle systems:
 - Examples: billiard balls, semiconductor device simulation, galaxies.
- Lumped variables depending on continuous parameters:
 - ODEs, e.g., circuit simulation (Spice), structural mechanics, chemical kinetics.
- ° Continuous variables depending on continuous parameters:
 - PDEs, e.g., heat, elasticity, electrostatics.
- ° A given phenomenon can be modeled at multiple levels.
- Many simulations combine more than one of these modeling techniques.

A Model Problem: Sharks and Fish

- Basic idea: sharks and fish living in an ocean
 - rules for movement (discrete and continuous).
 - breeding, eating, and death.
 - forces in the ocean.
 - forces between sea creatures.
- ° 6 problems (S&F1 S&F6)
 - Different sets of rule, to illustrate different phenomena.
- Available in Matlab, Threads, MPI, Split-C, Titanium, CMF, CMMD, pSather
 - not all problems in all languages.
- ° www.cs.berkeley.edu/~demmel/cs267/Sharks_and_Fish

Discrete Event Systems

Discrete Event Systems

° Systems are represented as:

- finite set of variables.
- each variable can take on a finite number of values.
- the set of all variable values at a given time is called the state.
- each variable is updated by computing a transition function depending on the other variables.

° System may be:

- synchronous: at each discrete timestep evaluate all transition functions; also called a finite state machine.
- asynchronous: transition functions are evaluated only if the inputs change, based on an "event" from another part of the system; also called event driven simulation.

° Example: functional level circuit simulation:

- state is represented by a set of boolean variables (high & low voltages).
- set of logical rules defining state transitions (and, or, etc.).
- synchronous: only interested in state at clock ticks.

Sharks and Fish as Discrete Event System

- ° Ocean modeled as a 2D toroidal grid.
- ° Each cell occupied by at most one sea creature.
- ° S&F 3, 4 and 5 are variations on this.

The Game of Life (Sharks and Fish 3)

- ° Fish only, no sharks.
- o An new fish is born if
 - · a cell is empty.
 - exactly 3 (of 8) neighbors contain fish.
- ° A fish dies (of overcrowding) if
 - cell contains a fish.
 - 4 or more neighboring cells are full.
- ° A fish dies (of loneliness) if
 - · cell contains a fish.
 - less than 2 neighboring cells are full.
- ° Other configurations are stable.

Parallelism in Sharks and Fish

- The simulation is synchronous
 - use two copies of the grid (old and new).
 - the value of each new grid cell depends only on 9 cells (itself plus 8 neighbors) in old grid.
 - simulation proceeds in timesteps, where each cell is updated at every timestep.
- Easy to parallelize using domain decomposition

P1	P2	P3
P4	P5	P6
P7	P8	P9

Repeat

compute locally to update local system barrier()

exchange state info with neighbors until done simulating

- Locality is achieved by using large patches of the ocean
 - boundary values from neighboring patches are needed.
- If only cells next to occupied ones are visited (an optimization), then load balance is more difficult. The activities in this system are discrete events.

Parallelism in Synchronous Circuit Simulation

- Circuit is a graph made up of subcircuits connected by wires
 - Component simulations need to interact if they share a wire.
 - Data structure is irregular (graph).
 - Parallel algorithm is synchronous:
 - compute subcircuit outputs.
 - propagate outputs to other circuits.
- Graph partitioning assigns subgraphs to processors
 - Determines parallelism and locality.
 - Attempts to evenly distribute subgraphs to nodes (load balance).
 - Attempts to minimize edge crossing (minimize communication).
 - Nodes and edges may both be weighted by cost.
 - NP-complete to partition optimally, but many good heuristics exist (later lectures).

edge crossings = 6

edge crossings = 10

Parallelism in Asynchronous Circuit Simulation

- ° Synchronous simulations may waste time:
 - Simulate even when the inputs do not change, with little internal activity.
 - Activity varies widely across circuit.
- Asynchronous simulations update only when an event arrives from another component:
 - No global time steps, but individual events contain time stamp.
 - Example: Circuit simulation with delays (events are gates changing).
 - Example: Traffic simulation (events are cars changing lanes, etc.).

Scheduling Asynchronous Circuit Simulation

° Conservative:

- Only simulate up to (and including) the minimum time stamp of inputs.
- May need deadlock detection if there are cycles in graph, or else "null messages".
- Example: Pthor circuit simulator in Splash1 from Stanford.

° Speculative:

- Assume no new inputs will arrive and keep simulating, instead of waiting.
- May need to backup if assumption wrong.
- Example: Parswec circuit simulator of Yelick/Wen.
- Example: New RISC CPUs designs employ "speculative execution".
- Optimizing load balance and locality is difficult:
 - Locality means putting tightly coupled subcircuit on one processor.
 - Since "active" part of circuit likely to be in a tightly coupled subcircuit, this may be bad for load balance.

Particle Systems

Particle Systems

° A particle system has

- a finite number of particles.
- moving in space according to Newton's Laws (i.e. F = ma).
- time is continuous.

° Examples:

- stars in space with laws of gravity.
- electron beam and ion beam semiconductor manufacturing.
- atoms in a molecule with electrostatic forces.
- · neutrons in a fission reactor.
- cars on a freeway with Newton's laws plus model of driver and engine.
- Many simulations combine particle simulation techniques with some discrete event techniques (e.g., Sharks and Fish).

Forces in Particle Systems

° Force on each particle can be decomposed into near and far:

force = external_force + nearby_force + far_field_force

External force

- ocean current to sharks and fish world (S&F 1).
- externally imposed electric field in electron beam.

Nearby force

- sharks attracted to eat nearby fish (S&F 5).
- balls on a billiard table bounce off of each other.
- Van der Wals forces in fluid (1/r^6).

° Far-field force

- fish attract other fish by gravity-like (1/r^2) force (S&F 2).
- gravity, electrostatics, radiosity.
- forces governed by elliptic PDE.

Parallelism in External Forces

- ° These are the simplest.
- ° The force on each particle is independent of other particles.
- ° Called "embarrassingly parallel".
- Evenly distribute particles on processors
 - Any distribution works.
 - Locality is not an issue, no communication.
- ° For each particle on processor, apply the external force.

Parallelism in Nearby Forces

- Nearby forces require interaction and therefore communication.
- ° Force may depend on other nearby particles:
 - Example: collisions.
 - simplest algorithm is O(n^2): look at all pairs to see if they collide.
- Usual parallel model is domain decomposition of physical domain:
 - O(n^2/p) particles per processor if evenly distributed.
- ° Challenge 1: interactions of particles near processor boundary:
 - · need to communicate particles near boundary to neighboring processors.
 - surface to volume effect means low communication.
 - Which communicates less: squares (as below) or slabs?
- Challenge 2: load imbalance, if particles cluster:
 - · galaxies, electrons hitting a device wall.

Load balance via Tree Decomposition

- ° To reduce load imbalance, divide space unevenly.
- ° Each region contains roughly equal number of particles.
- ° Quad-tree in 2D, oct-tree in 3D.

Example: each square contains at most 3 particles

Parallelism in Far-Field Forces

- Far-field forces involve all-to-all interaction and therefore communication.
- ° Force depends on all other particles:
 - Example: gravity.
 - Simplest algorithm is O(n^2) as in S&F 2, 4, 5.
 - Just decomposing space does not help since every particle apparently needs to "visit" every other particle.
- ° Use more clever algorithms to beat O(n^2).

Far-field forces: Particle-Mesh Methods

- Superimpose a regular mesh.
- "Move" particles to nearest grid point.
- ° Exploit fact that the far-field force satisfies a PDE that is easy to solve on a regular mesh:
 - FFT, multigrid.
 - · Wait for future lecture.
- Accuracy depends on the fineness of the grid is and the uniformity of the particle distribution.

Far-field forces: Tree Decomposition

- Based on approximation.
- ° O(n log n) or O(n) instead of O(n^2).
- Forces from group of far-away particles "simplifies" -- resembles a single large particle.
- Use tree; each node contains an approximation of descendants.
- Several Algorithms
 - · Barnes-Hut.
 - Fast multipole method (FMM) of Greengard/Rohklin.
 - Anderson.
 - · Later lectures.

Lumped Systems ODEs

System of Lumped Variables

Many systems are approximated by

- System of "lumped" variables.
- Each depends on continuous parameter (usually time).

° Example -- circuit:

- approximate as graph.
- wires are edges.
- nodes are connections between 2 or more wires.
- each edge has resistor, capacitor, inductor or voltage source.
- system is "lumped" because we are not computing the voltage/current at every point in space along a wire, just endpoints.
- Variables related by Ohm's Law, Kirchoff's Laws, etc.
- ° Forms a system of ordinary differential equations (ODEs).

Circuit Example

State of the system is represented by

- v_n(t) node voltages
- i_b(t) branch currents > all at time t
- v_b(t) branch voltages

° Equations include

- Kirchoff's current
- Kirchoff's voltage
- Ohm's law
- Capacitance
- Inductance

| Iude rent age |
$$\begin{pmatrix} 0 & A & 0 \\ A' & 0 & -I \\ 0 & R & -I \\ 0 & -I & C*d/dt \\ 0 & L*d/dt & I \end{pmatrix} * \begin{pmatrix} v_n \\ i_b \\ v_b \end{pmatrix} = \begin{pmatrix} 0 \\ S \\ 0 \\ 0 \end{pmatrix}$$

° Write as single large system of ODEs (possibly with constraints).

Systems of Lumped Variables

- Another example is structural analysis in civil engineering:
 - Variables are displacement of points in a building.
 - Newton's and Hook's (spring) laws apply.
 - Static modeling: exert force and determine displacement.
 - Dynamic modeling: apply continuous force (earthquake).
- ° The system in these case (and many) will be sparse:
 - i.e., most array elements are 0.
 - neither store nor compute on these 0's.

Solving ODEs

- Explicit methods to compute solution(t):
 - Example: Euler's method.
 - Simple algorithm: sparse matrix vector multiply.
 - May need to take very small time steps, especially if system is stiff (i.e. can change rapidly).
- o Implicit methods to compute solution(t):
 - Example: Backward Euler's Method.
 - Larger time steps, especially for stiff problems.
 - More difficult algorithm: solve a sparse linear system.
- ° Computing modes of vibration:
 - Finding eigenvalues and eigenvectors.
 - Example: do resonant modes of building match earthquake vibrations?
- ° All these reduce to sparse matrix problems:
 - Explicit: sparse matrix-vector multiplication.
 - Implicit: solve a sparse linear system.
 - direct solvers (Gaussian elimination).
 - iterative solvers (use sparse matrix-vector multiplication).
 - Eigenvalue/vector algorithms may also be explicit or implicit.

Parallelism in Sparse Matrix-vector multiplication

° y = A*x, where A is sparse and n x n

° Questions:

- which processors store
 - y[i], x[i], and A[i,j]
- which processors compute
 - x[i] = sum from 1 to n or A[i,j] * x[j]

° Graph partitioning:

- Partition index set {1,...,n} = N1 u N2 u ... u Np.
- for all i in Nk, store y[i], x[i], and row i of A on processor k.
- Processor k computes its own y[i].

° Constraints:

- · balance load.
- balance storage.
- minimize communication.

Graph Partitioning and Sparse Matrices

Relationship between matrix and graph

- ° A "good" partition of the graph has
 - equal number of (weighted) nodes in each part (load balance).
 - minimum number of edges crossing between (minimize communication).
- Generally reorder the rows/columns of the matrix by placing all the nodes in one partition together.

More on Matrix Reordering via Graph Partitioning

- ° Goal is to reorder rows and columns to
 - improve load balance.
 - decrease communication.
- "Ideal" matrix structure for parallelism: (nearly) block diagonal:
 - p (number of processors) blocks.
 - few non-zeros outside these blocks, since these require communication.

				P0
				P1
=			*	P2
				P3
				P4

What about implicit methods and eigenproblems?

Direct methods (Gaussian elimination)

• future lectures will consider both dense and sparse cases.

Iterative solvers

- future lectures will discuss several of these.
- most have sparse-matrix-vector multiplication in kernel.

° Eigenproblems

- future lectures will discuss dense and sparse cases.
- depends on student interest.